Mercurial Essays

Free Essays & Assignment Examples

Physics in Everyday Life

PHYSICS OF EVERYDAY LIFE BY Neha arora DEPARTMENT OF APPLIED SCIENCES Science is around us everywhere. The water you are drinking has science in it; the house you are living in has science in it. Anywhere you go, whatever you do sciences will surely going to help you. When we talk about the educational science, there are many other subjects which come under science. These subjects are called branches of science. Some of them are physics, chemistry, biology, astrology, etc. Physics is more than an abstract area of research, it is also a powerful lens through which to view the everyday world.

Everyday phenomena, toys and puzzles offer many interesting challenges and some lead to deep, interesting problems, especially in nonlinear science and mathematics. And they remind us why we got into Physics in the first place If you’ve ever wondered what makes lightning, why a boomerang returns, how ice skaters can spin so fast, how Michael Jordan can “fly,” why waves crash on the beach, how that tiny computer can do complicated problems, or how long it takes light from a star to reach us, you have been thinking about some of the same things physicists study everyday.

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!

order now

Physicists like to ask questions. They try to find answers for almost everything from when the universe began to why soda fizzes. If you like to explore and figure out why things are the way they are, you might like physics. Let us have a glance at the wonders and glimpses of Physics in our day to day life with reference to some instances and phenomena whose explanation can be made possible only with the help of Physics. ? What happens when sheets of paper, long rolled up into a tube, are unrolled but simply won’t ever lie flat again?

Paper consists mostly of cellulose, a natural polymer (i. e. plastic) built by stringing together thousands of individual sugar molecules into vast chains. Like the sugars from which it’s constructed, cellulose’s molecular pieces cling tightly to one another at room temperature and make it rather stiff and brittle. Moreover, cellulose’s chains are so entangled with one another that it couldn’t pull apart even if its molecular pieces didn’t cling so tightly. These effects are why it’s so hard to reshape cellulose and why wood or paper don’t melt; they burn or decompose instead.

In contrast, chicle — the polymer in chewing gum — can be reshaped easily at room temperature. Even though pure cellulose can’t be reshaped by melting, it can be softened with water and/or heat. Like ordinary sugar, cellulose is attracted to water and water molecules easily enter its chains. This water lubricates the chains so that the cellulose becomes somewhat pliable and heat increases that pliability. When you iron a damped cotton or linen shirt, both of which consist of cellulose fibers, you’re taking advantage of that enhanced pliability to reshape the fabric.

But even when dry, fibrous materials such as paper, cotton, or linen have some pliability because thin fibers of even brittle materials can bend significantly without breaking. If you bend paper gently, its fibers will bend elastically and when you let the paper relax, it will return to its original shape. However, if you bend the paper and keep it bent for a long time, the cellulose chains within the fibers will begin to move relative to one another and the fibers themselves will begin to move relative to other fibers. Although both of these motions can be facilitated by moisture and heat, time along can get the job done at room temperature.

Over months or years in a tightly rolled shape, a sheet of paper will rearrange its cellulose fibers until it adopts the rolled shape as its own. When you then remove the paper from its constraints, it won’t spontaneously flatten out. You’ll have to reshape it again with time, moisture, and/or heat. If you press it in a heavy book for another long period, it’ll adopt a flat shape again. ? Why does combining red, green, and blue light create white light? Our eyes sense color by measuring the relative brightnesses of the red, green, and blue portions of the light spectrum.

When all three portions of the spectrum are present in the proper amounts, we perceive white. The color sensing cells in our eyes are known as cone cells and they can detect only three different bands of color. One type of cone cell is sensitive to light in the red portion of the spectrum, the second type is sensitive to the green portion of the spectrum, and the third type is sensitive to the blue portion of the spectrum. Their sensitivities overlap somewhat, so light in the yellow and orange portions of the spectrum simultaneously affects both the red sensitive cone cells and the green sensitive ones.

Our brains interpret color according to which of three cone cells are being stimulated and to what extent. When both our red sensors and our green sensors are being stimulated, we perceive yellow or orange. That scheme for sensing color is simple and elegant, and it allows us to appreciate many of the subtle color variations in our world. But it means that we can’t distinguish between certain groups of lights. For example, we can’t distinguish between (1) true yellow light and (2) a carefully adjusted mixture of true red plus true green. Both stimulate our red and green sensors just enough to make us perceive yellow.

Those groups of lights look exactly the same to usSimilarly, we can’t distinguish between (3) the full spectrum of sunlight and (4) a carefully adjusted mixture of true red, true green, and true blue. Those two groups stimulate all three types of cone cells and make us perceive white. They look identical to us. That the primary colors of light are red, green, and blue is the result of our human physiology and the fact that our eyes divide the spectrum of light into those three color regions. If our eyes were different, the primary colors of light would be different, too.

Many things in our technological world exploit mixtures of those three primary colors to make us see every possible color. Computer monitors, televisions, photographs, and color printing all make us see what they want us to see without actually reproducing the full light spectrum of the original. For example, if you used a light spectrum analyzer to study a flower and a photograph of that flower, you’d discover that their light spectra are different. Those spectra stimulate our eyes the same way, but the details of the spectra are different. We can’t tell them apart ? Why do things such as sneakers, T-shirts, and nailpolish hange color in the sun? Sunlight consists not only of light across the entire visible spectrum, but of invisible infrared and ultraviolet lights as well. The latter is probably what is causing the color-changing effects you mention. Ultraviolet light is high-energy light, meaning that whenever it is emitted or absorbed, the amount of energy involved in the process is relatively large. Although light travels through space as waves, it is emitted and absorbed as particles known as photons. The energy in a photon of ultraviolet light is larger than in a photon of visible light and that leads to interesting effects.

First, some molecules can’t tolerate the energy in an ultraviolet photon. When these molecules absorb such an energetic photon, their electrons rearrange so dramatically that the entire molecule changes its structure forever. Among the organic molecules that are most vulnerable to these ultraviolet-light-induced chemical rearrangements are the molecules that are responsible for colors. The same electronic structural characteristics that make these organic molecules colorful also make them fragile and susceptible to ultraviolet damage. As a result, they tend to bleach white in the sun.

Second, some molecules can tolerate high-energy photons by reemitting part of the photon’s energy as new light. Such molecules absorb ultraviolet or other high-energy photons and use that energy to emit blue, green, or even red photons. The leftover energy is converted into thermal energy. These fluorescent molecules are the basis for the “neon” colors that are so popular on swimwear, in colored markers, and on poster boards. When you expose something dyed with fluorescent molecules to sunlight, the dye molecules absorbs the invisible ultraviolet light and then emit brilliant visible. How does a paper towel absorb water? Paper towels are made out of finely divided fibers of cellulose, the principal structural chemical in cotton, wood, and most other plants. Cotton is actually a polymer, which like any other plastic is a giant molecule consisting of many small molecules linked together in an enormous chain or treelike structure. The small molecules or “monomers” that make up cellulose are sugar molecules. We can’t get any nutritional value out of cellulose because we don’t have the enzymes necessary to split the sugars apart.

Cows, on the other hand, have microorganisms in their stomachs that produce the necessary enzymes and allow the cows to digest cellulose. Despite the fact that cellulose isn’t as tasty as sugar, it does have one important thing in common with sugar: both chemicals cling tightly to water molecules. The presence of many hydroxyl groups (-OH) on the sugar and cellulose molecules allow them to form relatively strong bonds with water molecules (HOH). This clinginess makes normal sugar very soluble in water and makes water very soluble in cellulose fibers.

When you dip your paper towel in water, the water molecules rush into the towel to bind to the cellulose fibers and the towel absorbs water. Incidentally, this wonderful solubility of water in cellulose is also what causes shrinkage and wrinkling in cotton clothing when you launder it. The cotton draws in water so effectively that the cotton fibers swell considerably when wet and this swelling reshapes the garment. Hot drying chases the water out of the fibers quickly and the forces between water and cellulose molecules tend to compress the fibers as they dry. The clothes shrink and wrinkle in the process. How do the automatic doors at a supermarket know when to open and close? How do they work? Devices that sense your presence are either bouncing some wave off you or they are passively detecting waves that you emit or reflect. The wave-bouncing detectors emit high frequency (ultrasonic) sound waves or radio waves and then look for reflections. If they detect changes in the intensity or frequency pattern of the reflected waves, they know that something has moved nearby and open the door. The passive detectors look for changes in the infrared or visible light patterns reaching a detector and open the door when they detect such changes. When a device uses two batteries, why do they have to be place positive to negative? Are there any exceptions? Batteries are “pumps” for electric charge. A battery takes an electric current (moving charge) entering its negative terminal and pumps that current to its positive terminal. In the process, the battery adds energy to the current and raises its voltage (voltage is the measure of energy per unit of electric charge). A typical battery adds 1. 5 volts to the current passing through it. As it pumps current, the battery consumes its store of chemical potential energy so that it eventually runs out and “dies. If you send a current backward through a battery, the battery extracts energy from the current and lowers its voltage. As it takes energy from the current, the battery adds to its store of chemical potential energy so that it recharges. Battery charges do exactly that: they push current backward through the batteries to recharge them. This recharging only works well on batteries that are designed to be recharged since many common batteries undergo structural damage as their energy is consumed and this damage can’t be undone during recharging.

When you use a chain of batteries to power an electric device, you must arrange them so that each one pumps charge the same direction. Otherwise, one will pump and add energy to the current while the other extracts energy from the current. If all the batteries are aligned positive terminal to negative terminal, then they all pump the same direction and the current experiences a 1. 5 volt (typically) voltage rise in passing through each battery. After passing through 2 batteries, its voltage is up by 3 volts, after passing through 3 batteries, its voltage is up by 4. 5 volts, and so on


I'm Belinda!

Would you like to get a custom essay? How about receiving a customized one?

Check it out