Mercurial Essays

Free Essays & Assignment Examples

Sustainable Materials Management

OECD GLOBAL FORUM ON ENVIRONMENT Focusing on SUSTAINABLE MATERIALS MANAGEMENT 25-27 October 2010, Mechelen, Belgium Materials Case Study 1: Critical Metals and Mobile Devices Working Document OECD Environment Directorate, OECD, 2010 NOTE FROM THE SECRETARIAT In addition to aluminium, wood fibres and plastics, critical metals have been identified as priority materials for which sustainable management would bring significant environmental, social and economic benefits.

The objective of this case study on critical metals is to analyse the environmental impacts of critical metals throughout their lifecycle and identify the best practices for their sustainable management. This case study will be presented at the OECD Global Forum on Sustainable Materials Management to be held in Belgium from 25 to 27 October 2010 and, together with the other three case studies, will serve as a basis for the discussions of Session 1 on Good SMM Practices in Priority Materials.

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!


order now

The Government of Canada case study project team involved participants from three federal departments: Natural Resources Canada (NRCan), Industry Canada (IC) and Environment Canada (EC). The project team was led by Alain Dubreuil and Rob Sinclair in the Minerals and Metals Sector of NRCan. Project support was provided by Orlando Dinardo (NRCan), Philippa Huntsman-Mapila (NRCan), David Koren (NRCan), Peter Campbell (IC), Patrick Huot (IC), Cheryl Beillard (NRCan), Duncan Bury (EC), Dennis Jackson (EC) and Andre Martin (EC). Alberto Fonseca and Steven B.

Young (University of Waterloo) were sub-contracted to conduct a literature review and develop an analytical framework for advancing research into the social aspects of sustainable metals management. Nokia, Umicore, the US National Research Council of the National Academies and many other players have provided valuable information that was used in the preparation of this case study; however, the content of this document, including any errors or omissions, shall remain the responsibility of the project team alone. This report is work in progress.

The opinions expressed in this paper are the sole responsibility of the author(s) and do not necessarily reflect those of the OECD or the governments of its member countries. 2 TABLE OF CONTENTS EXECUTIVE SUMMARY …………………………………………………………………………………………………………….. 6 Why was this report prepared? …………………………………………………………………………………………………….. 6 What is sustainable materials management (SMM)? ……………………………………………………………………….. How was the work done? …………………………………………………………………………………………………………….. 7 Who is the report for? …………………………………………………………………………………………………………………. 7 What are the key policy points in the report? …………………………………………………………………………………. 7 Principle SMM questions and preliminary responses ………………………………………………………………………. What are the primary knowledge gaps? ……………………………………………………………………………………….. 10 How can the report findings be used? ………………………………………………………………………………………….. 10 What are some next steps? …………………………………………………………………………………………………………. 12 RESUME ……………………………………………………………………………………………………………………………………. 3 Pourquoi ce rapport ? ………………………………………………………………….. ……………………………………………. 13 Qu? est-ce que la gestion durable des matieres (GDM) ? ………………………………………………………………… 13 Comment les travaux ont-ils ete menes ?……………………………………………………………………………………… 13 A qui le rapport est-il destine ? …………………………………………………………………………………………………… 4 Quels sont les points cles du rapport dans l? optique de l? action des pouvoirs publics ? ……………………… 14 Principales questions entourant la GDM et premiers elements de reponse ……………………………………….. 16 Quels sont les principaux deficits de connaissances ? ……………………………………………………………………. 17 A quoi peuvent servir les conclusions du rapport ? ……………………………………………………………………….. 18 Quelles sont les prochaines etapes ? …………………………………………………………………………………………… 20 1. INTRODUCTION …………………………………………………………………………………………………………………. 21 1. 1. 1. 2. 1. 3. 2. 2. 1. 2. 2. 2. 3. 2. 4. 3. 3. 1. 3. 2. 3. 3. 3. 4. 3. 5. 3. 6. 3. 7. 3. 8. 3. 9. Objectives………………………………………………………………………………………………………………………. 22 Background and report structure ……………………………………………………………………………………….. 2 Case study context ………………………………………………………………………………………………………….. 22 Substance flow analysis …………………………………………………………………………………………………… 32 Life cycle assessment ………………………………………………………………………………………………………. 32 Eco-efficiency: Combining environmental and economic issues …………………………………………… 5 Framework for incorporating social aspects ……………………………………………………………………….. 36 Raw material extraction and processing …………………………………………………………………………….. 39 Design …………………………………………………………………………………………………………………………… 43 Manufacturing ………………………………………………………………………………………………………………… 6 Product use …………………………………………………………………………………………………………………….. 48 End-of-life ……………………………………………………………………………………………………………………… 50 Refurbishment and reuse ………………………………………………………………………………………………….. 54 Material recovery and recycling………………………………………………………………………………………… 6 Final disposal …………………………………………………………………………………………………………………. 62 Life cycle stages overview and comparison………………………………………………………………………… 64 3 METHODOLOGIES ……………………………………………………………………………………………………………… 31 ANALYSIS AND DISCUSSION ……………………………………………………………………………………………. 38 4.

AN INVENTORY OF KNOWLEDGE GAPS ………………………………………………………………………….. 67 Stage 1: Raw material extraction and processing ………………………………………………………………………….. 67 Stage 2: Design ………………………………………………………………………………………………………………………… 67 Stage 3: Manufacturing ……………………………………………………………………………………………………………… 7 Stage 4: Product use ………………………………………………………………………………………………………………….. 67 Stage 5: End-of-life …………………………………………………………………………………………………………………… 67 Stage 6: Refurbish and reuse………………………………………………………………………………………………………. 68 Stage 7: Recycling ……………………………………………………………………………………………………………………. 8 Stage 8: Final disposal ………………………………………………………………………………………………………………. 68 General gap comments ………………………………………………………………………………………………………………. 68 5. POLICY BARRIERS AND OPPORTUNITIES ……………………………………………………………………….. 70 5. 1 5. 2 5. 3 5. 4 5. 5 5. 6 5. 7 5. 8 5. 9 5. 10 5. 11 5. 12 5. 13 Macro and micro environmental impacts over the full life cycle …………………………………………… 0 System integration – supply chain …………………………………………………………………………………….. 70 Effects on “natural capital” ………………………………………………………………………………………………. 71 Costs and benefits of SMM ………………………………………………………………………………………………. 71 Consumer and producer interests ………………………………………………………………………………………. 1 International and cross-sectoral dimensions ……………………………………………………………………….. 71 Effects on the competitiveness of firms in related industries…………………………………………………. 72 Social implications of SMM …………………………………………………………………………………………….. 72 Developing world implications …………………………………………………………………………………………. 2 Mining activities ………………………………………………………………………………………………………… 73 Design for environment ………………………………………………………………………………………………. 73 Material substitution …………………………………………………………………………………………………… 73 Impact of international agreements and REACH on trade and recovery of materials…………… 74 6. CONCLUDING OBSERVATIONS ………………………………………………………………………………………… 5 REFERENCES ……………………………………………………………………………………………………………………………. 76 Tables Table 1: World Reserves for antimony, beryllium, palladium and platinum ……………………………………… 27 Table 2: Industry Control of Selected Substances …………………………………………………………………………. 41 Table 3: Cost/benefit analysis for two recycling scenarios of Printed Wiring Boards (Euros per tonne) . 9 Table 4: Weight versus value distribution for some consumer electronic devices ……………………………… 60 Figures Figure 1: Critical metals used in future sustainable technologies according to the Oko-Institut…………… 24 Figure 2: Criticality matrix for thirteen materials ………………………………………………………………………….. 25 Figure 3: Tantalum – World production and value, 1969 – 2007……………………………………………………… 26 Figure 4: Countries having a dominant mining production of some metals ………………………………………. 7 Figure 5: Circuit board elements over time ………………………………………………………………………………….. 28 Figure 6: Material content of a mobile phone (by weight) ……………………………………………………………… 29 Figure 7: Mobile phone parts – exploded view……………………………………………………………………………… 30 Figure 8: Generic substance flow analysis for platinum (Pt) …………………………………………………………… 2 Figure 9: Stages of a Life Cycle Assessment Study ………………………………………………………………………. 33 4 Figure 10: Physical versus environmental weight for mobile phones ………………………………………………. 34 Figure 11: Cumulative environmental impacts of consumer electronics across the life-cycle ……………… 35 Figure 12: Generic eco-efficiency per kg for various end-of-life mobile phones scenarios …………………. 35 Figure 13: Proposed framework for the identification of social issues (re metals in mobile phones) ……. 7 Figure 14: Mobile Phone Lifecycle – Conceptual Material and Product Flows with Associated Emission and Transport Impacts……………………………………………………………………………………………………………….. 38 Figure 15: The Metal Wheel showing linkage in Natural Resources Processing ……………………………….. 40 Figure 16: Prices for Palladium, 1996-2001 …………………………………………………………………………………. 42 Figure 17: Mobile phone subscriptions, globally and regionally……………………………………………………… 9 Figure 18: Mobile Phone User Surveys – 2007 to 2008 …………………………………………………………………. 53 Figure 19: Conceptual impacts for various life cycle stages of a mobile phone …………………………………. 65 5 EXECUTIVE SUMMARY Why was this report prepared? The Organization for Economic Cooperation and Development (OECD) has a Working Group on Waste Prevention and Recycling (WGWPR) that has been exploring the concept of Sustainable Materials Management (SMM) since 2004.

This case study, being one of four, was prepared to determine whether the SMM concept is useful when considering the availability of critical metals in relation to the management of end-of-life products, specifically mobile phones which serve as proxy for the rapidly growing consumer electronics sector. Since SMM is still in its adolescence, the case study approach provides a good opportunity to identify areas for the potential application of different tools and policy instruments for government policy makers concerned with material use and the optimization of economic, environmental and social benefits.

This case study relates to the metals found in mobile devices. The metals considered in this case study are antimony, beryllium, palladium and platinum. The case study is submitted to the SMM Steering Committee for their consideration and input to the October 2010 SMM workshop. What is sustainable materials management (SMM)? Before delving further into the heart of this case study, it would be useful to present the working definition of SMM (which is repeated and expanded upon in the Introduction as well as in other WGWPR papers).

SMM is “an approach to promote sustainable materials use, integrating actions targeted at reducing negative environmental impacts and preserving natural capital throughout the life cycle of materials, taking into account economic efficiency and social equity. ” Accordingly, sustainable development (SD) is the overarching goal and SMM is the means to get there, by embracing policy integration, life cycle thinking, efficiency and equity in developing and assessing policies to promote the sustainable use of materials.

The conundrum that arises with SMM is that policy initiatives to optimise the sustainable use of materials are linked to different “points” across the life cycle: as illustrated in the following graphic, where does SMM begin and end. SMM Resources Materials Products Waste Life-cycle 6 How was the work done? The draft programme of work and the budget for 2009-10 for the WGWPR article 7 provides clear terms of reference for this project: “The case studies would be built on existing data on material flow in the selected areas. In other words, though this case study may identify important data gaps, no primary research would be conducted to bridge them. If deemed important, further work could be undertaken under the auspices of the OECD/WGWPR. The composition of the Government of Canada project team is provided under Acknowledgements, which follows the Table of Contents. Who is the report for? The primary audience for the SMM case study work is government policy makers, industry leaders and civil society members. In some OECD countries, responsibilities for recycling and related matters are shared or divided between two or even three levels of government.

A response to this question might be that SMM is in search of material management solutions further up the product stream and this is the natural domain of national or even international agents that may have more influence over such matters than cities and towns. Therefore this report is for policy makers interested in joining the discussion on the merits of SMM. What are the key policy points in the report? General ? The benefits and costs of mobile phone use or recycling/disposal are unevenly distributed across all three sustainable development dimensions – environmental, social and economic – particularly in developing countries.

The life cycle approach to supply chain management is extremely beneficial. Even if complete capture of all mobile devices and maximum recycling of the metals they contain were achieved, there would still be a need for primary mining to meet growing demand for the services metals provide. In the life cycle of consumer electronic devices, the design stage is of critical importance since this is where the type and quantity of materials is determined. Decisions made at this stage will have direct economic and environmental impacts when the devices are recycled.

As with most consumer electronics, the mobile phone industry has demonstrated a tremendous capacity for rapid technological change. Specifically, the introduction of new (non-metallic, polymer based) materials may impact future reuse and recycling activities. In this regard, technological innovation is an important policy driver. ? ? ? ? Economic ? Since the outcomes or results of SMM planning occur across three different dimensions (economic, environmental and social), it is very difficult to establish a fair and balanced way of assessing total costs and benefits.

Many consumer electronic products retain residual reuse or material value, particularly those that contain metals; unless they are lost into the waste stream, these products are globally traded commodities; by thinking globally and acting locally, national policy makers can contribute towards a comprehensive, international approach in managing these products and their materials, as discussed in this study, to the sustainable use of the metals contained therein. ? 7 ? The geographical profile of a metal greatly influences the degree of its criticality.

By and large, critical metals are mined in a limited number of locations (or co-produced with base metals) though they may be found in many other places: when prices rise, mines open. The origin of the metal (primary or secondary) is determined by economics and availability. The economic value of a metal does not necessarily reflect or correlate with criticality (e. g. gold). Managing the flow of expired mobile phones might optimise the recovery of metals from them but could raise trade issues in certain circumstances. Policies that seek to change or control these flows may create non-tariff trade barriers.

Alternative materials are considered during the product design stage. The potential for and the degree of material substitution links directly to issues of scarcity and pricing. When scarcity drives prices of primary metals up, for example, markets will recycle much more metal and invest in appropriate technology as required. ? ? ? ? Environmental ? ? ? ? ? Material grade is determined by conformity to established specifications. Informed product design, economic efficiency in the use of resources and an effective recycling infrastructure are the best ays of preserving “natural capital”. The collection of all such devices, reuse of their parts or recycling of component materials is a major contributor to maximizing resource efficiency. Recycling is an energy efficient activity that, in turn, reduces greenhouse gas emissions (though the benefits are material specific). Recycling facilities that operate under environmentally sound management standards should be able to process materials regardless of the facility location or the source of the materials.

An inventory of Environmentally Sound Management (ESM) facilities around the world that have the ability to process end-of-life consumer electronics is needed, which could be proposed to the Basel Convention secretariat as a future project. Substitution can be used to replace toxic or non-recyclable components but adverse product quality changes are possible and must be carefully scrutinized using a risk assessment approach to avoid negative effects. ? Social ?

Consumers, producers and government are the primary players when it comes to sustainable management of materials and products but the first two have different perspectives and drivers than governments that are responsible for optimizing benefits and/or minimizing risk for their constituents. Social life cycle assessment is an emerging tool to address the social implications of sustainable materials use but more work is required to further develop the methodology for the benefit of more informed policy making. ? 8

Principle SMM questions and preliminary responses What are the current estimated major resources flows (in terms of environmental impacts) and how are they expected to evolve? The annual sale of mobile phones is currently around 1. 2 billion units weighing 84,000 tonnes (excluding batteries). Where the metals of interest are concerned, 84 tonnes of antimony (Sb), 7. 1 tonnes of beryllium (Be), 12. 1 tonnes of palladium (Pd) and 0. 3 tonnes of platinum (Pt) are used to make these devices. First, life cycle data for Sb and Be are currently not available. Second, material flows cannot by themselves be used as a proxy for environmental impact.

Third, the question of impacts cannot be addressed without the application of additional SMM methodologies. The number of mobile devices sold annually will continue to increase. Individual device weight will depend on innovation and consumer demand, while some manufacturers are signaling that Be and Sb content will probably be phased out due to health/toxicity concerns. Demand for Pd and Pt in other products such as pollution control devices is expected to increase, leading to higher prices for these metals; as a result, new technology using different materials is likely to be developed.

However, projections regarding new devices and new material applications are extremely tenuous given the rapidity of change over recent years. How can new insights be gained and translated into new measures when taking a life cycle perspective? The life cycle approach provides recyclers and waste managers with the opportunity of appreciating and possibly affecting the type and volume of materials that flow in and out of the proverbial “pipe. ” Where mobile devices are concerned, enhanced life cycle understanding may be used to support and expand current reuse and recycling activities.

In particular, the collaboration of recyclers and product designers would be an interesting way of bridging the gap that appears to exist between them: by understanding the interactions and dependencies inherent in the design, production, use, reuse and recycling life cycle stages, new measures to improve efficiencies may be identified. What policy measures have been taken or can be taken to stimulate sustainable outcomes? Where materials processing is concerned, recycling does save energy. Public policy should promote the link between energy savings, improved economics and reduced GHG emissions.

To improve recycling yields and reduce exposure to workers, policies to manage risk include raising awareness and setting standards. Where some mobile phone material has been identified as problematic for recyclers, manufacturers are starting to phase these materials out (Be and Sb for example). Design for recycling is conceptually desirable and may be influenced by the introduction of relevant policies such as extended producer responsible (EPR) or individual producer responsible (IPR). Where domestic policy making as resulted in EPR programs, experience has shown that product capture rates usually rise. This is probably the best approach to managing end-of-life consumer products such as mobile devices. In fact, most device manufacturers or the wireless service providers offer some sort of take-back program for these products: the challenge is in getting the general public to engage. Given their diminishing life span, a deposit system for these devices or innovative leasing arrangements may be good mechanisms for raising collection rates.

A national or regional ban on the disposal of these devices sends a strong message to the general public but ultimately such a regulation is unenforceable and perhaps useless if adequate recycling infrastructure is lacking. Since the technical lifespan of a mobile phone is about ten years, promoting extended mobile phone use through policy ultimately supports sustainable use of materials. Government procurement contracts could specify product durability requirements; alternatively, standard government policy could extend electrical and electronic equipment usage periods.

A mix of policies and programs is likely the most effective approach. Further information regarding measures already undertaken has been assembled 9 in a separate OECD report entitled “Inventory of International Initiatives Related to Sustainable Materials Management” (Sep-2008): Some of these initiatives include corporate social responsibility, integrated product policies, clean production centres, green procurement, eco-labeling and EPR (etc. ). To what extent are different actors in society engaged in active, ethically based responsibilities for sustainable outcomes?

A considerable amount of work is underway to address various issues related to consumer electronic products specifically, and metals in general. On page 36 of document “Critical Metals Case Study Annexes”, Figure 3 identifies 25 different initiatives that are either international (MPPI, PACE, GeSi and StEP, etc. ) or national (e. g. Canada, Australia) in nature. Some of the descriptor words used in the titles of these initiatives include “responsible”, “stewardship”, “commitment”, “sustainability”, “coalition” and “partnership. Questions arise concerning extent: are 25 such initiatives too few or too many? How are these programs being monitored and assessed? How well are these programs performing (re: outcomes)? Are they cost-effective? Why were they established in the first place? Are the right partners at the table? Who is funding or supporting the work? These are all good questions which remain to be addressed. What are the primary knowledge gaps? ? ? ? ? ? ? ? ? ? ? The global flow of mobile phones destined for reuse or recycling is largely unknown.

Life cycle data for some critical metals production are sparse. GHG and energy data assembled for this case study were aggregated at the extraction/refining and manufacturing stages: separate data sets for each stage are required. Can the hidden social costs underlying critical metals and mobile phones production/recycling processes be measured? How can the economic and social benefits of mobile communication devices be compared with the environmental and social impacts of improper disposal or recycling?

Why do mobile phone users hoard obsolete units and what is the best way to engage the consumer in planned or already established collection programs? What is the average cost of mobile phone refurbishment and what is the displacement relationship between reused mobile phones and the production of new ones? What is the extent and size of the informal recycling sector for consumer electronic products? Further economic analysis is required to improve the comparison of informal (low tech) and smelter (integrated pyrometallurgical) based recycling operations.

Further science is required to measure the risk associated with final disposal of mobile phones when they are disposed of in engineered landfills and “high-tech” incinerators with emissions control versus “low-tech” landfills and incinerators with poor or no controls. How can the report findings be used? The report findings are summarized under the key policy points and the primary knowledge gaps discussion that preceded this paragraph. These areas were the main focus of this case study. More detail for both can be found in Sections 4 and 5 of the main report.

In this report, four SMM methodologies (substance flow analysis, life cycle assessment, ecoefficiency, and a proposed social aspects framework) are used to document the state of knowledge concerning the source and fate of critical metals contained in mobile phones. The mobile phones should be 10 considered as a proxy for other consumer electronic products although it is acknowledged that while their proportion in the solid waste stream is rapidly expanding in relative terms, their presence in the landfills and incinerators of the world is relatively very small, in absolute terms (less than 0. % by weight in Canada). Despite these small quantities, the presence of valuable metals in mobile phones, both critical and precious, has attracted significant interest. Are these metals a risk when discarded into the environment? Are these metals worth recovering? What are the opportunities and the barriers to increased recycling? These are some of the questions that policy makers could consider with a view towards building a broader understanding of how to apply SMM. Another task could involve national consultations to raise awareness among stakeholders of the concept and seek their feedback on its relevance.

Government policy makers will have different views regarding the critical nature of the metals used in consumer electronic devices. This report has indicated that the concept of criticality is subjective, geographically specific and likely to change through time. Underlying the concept is the idea of „motive?. Drivers of criticality are primarily commercial or economic. Manufacturing nations have an interest in ensuring future supplies of metals required to produce the economic goods on which their economic and social well-being depends at a price which maintains their global competitiveness.

Sudden interruptions in the supply of metals deemed „critical? for specific applications may result in significant economic or social dislocation. Hence „criticality? may be linked to „availability? and demand. Where an interest or application is „strategic? , i. e. related to national defence, cost is rarely an issue. This paper does not attempt to address the rationale underlying the identification of „critical metals? , as it will vary by country and over time.

Some important conclusions reached in this study are as follows: First, the collection of used mobile phones needs to be greatly improved in Canada and other OECD countries. Second, the triage or sorting stage that follows collection optimizes device reuse, which is a key economic driver in sustaining these programs. Third, there may be a preference on the part of original equipment manufacturers to encourage recycling over reuse in order to support new product sales. Fourth, interim processors play an important role in which the disassembly of used mobile phones leads to parts reuse, emoval of contaminants and material recovery. Fifth, facilities that are efficiently operated and achieve maximum recycling yields should be competitive enough on the world market to procure sufficient feedstock (including end-of-life mobile phones), though companies that operate with lower standards create an uneven playing field. If governments intervene to secure supplies of specific metals to manufacturing nations, that would run counter to the broader commitment of the OECD to the market economy and goal of assisting other countries? economic development.

Sixth, since informal recycling in developing countries has negative environmental and health consequences, it is imperative that environmentally sound management capacity be developed because the number of mobile phone users in Asia and Africa is rising very quickly. Policy interventions to support SMM activities such as mobile phone collection and recycling can be introduced across the life cycle of this device. The scope and depth of government intervention will vary across all OECD member states according to political agenda and “culture. In an extreme case, national governments may be able to support or even mandate design for recycling via discussions of EPR with industry; however, this is big challenge for countries without a large manufacturing base. Alternatively, discussions with Telecom companies via forums such as the Mobile Phone Partnership Initiative (MPPI) may lead to voluntary initiatives that seek to achieve the same goals (e. g. the removal of beryllium from mobile phones to address worker health and safety issues).

Another part of the life cycle where policy intervention may have an impact is the end-of-life stage where users decide what to do with obsolescent mobile phones. For example, the redemption of a mobile phone deposit fee or a ban on disposal may result in an increased collection rate that would in turn result in increased recycling activities. A more extensive discussion of SMM policy principles and instruments is provided in the thematic papers, also being prepared for the OECD? s Working Group on Waste Prevention and Recycling (WGWPR). 1 The selection of four critical metals found in mobile phones was undertaken to contain the analysis. On an annual volume basis the broader electronics industry uses 5% of the world? s platinum, 16% of its palladium, 50% of its antimony and about 7% of its beryllium (as a beryllium copper alloy). Metal mix is product dependant and subject to constant change as technology evolves over time. The global economy will continue to place demands on available metal stocks: these demands are fluid and mostly resolved in the global marketplace.

Perhaps policy makers need to consider how the SMM process might influence the marketplace in a manner that optimizes the use of scarce resources. What are some next steps? There is no doubt that more effort is required to improve the knowledge of end-of-life mobile phone flows. Policy makers could discuss this prospect with the wireless industry to determine if there are any viable tracking systems already in place: perhaps the only issue is consolidation of disparate information.

The coordination of national tracking activities may best be left with an industry comprised of manufacturers, retailers, collection agents, refurbishers, recyclers and smelters. The mobile phone “brand owners” may be best positioned to assume this coordinating role and indeed have made important contributions towards the Basel Convention? s Mobile Phone Partnership Initiative. A better understanding of what people do with mobile phones that reach their real or perceived end of life would be worth further examination. Policy makers could conduct consumer surveys to determine why existing collection systems are not used.

They should also work with the industry players identified in the previous paragraph to determine lessons learned and best practices. This is ongoing work. Of all the instruments that fall under the SMM umbrella, the life cycle approach is arguably the most important. The life cycle approach is no longer an academic-only activity. In the business world, reference is frequently made to the triple bottom line (economic, social and environmental), which promotes sustainable development and corporate social responsibility.

In the context of this case study, mobile phone manufacturers that subscribe to the triple bottom line may be engaging in SMM activities under a different name. The promotion of such companies as being “best in class” or “front runners” would be an appropriate role for national governments or international agencies to play. This is how life cycle thinking becomes common currency. While this paper does not address the idea in detail it does suggest that a material? s criticality can be influenced by the availability of alternatives. Material ubstitution, in turn, is impacted by various social and economic patterns as well as technological change. Where government undertakes to promote substitution based on environmental or human health concerns, policies designed to promote such shifts should be applied on a case-by-case basis, using sound science and risk assessment as well as the evaluation of the risks associated with potential alternate materials. Why and when one material is replaced by another is of interest to policy makers and perhaps represents an opportunity to exercise some of the SMM principles and policies elucidated elsewhere.

It is generally understood that industry undertakes material substitution very carefully and over some time to avoid mistakes that would otherwise compromise production processes, product performance and the profit prerogative. 12 RESUME Pourquoi ce rapport ? Au sein de l? Organisation de cooperation et de developpement economiques (OCDE), le Sous-groupe sur la prevention de la production de dechets et le recyclage (SGPDR) travaille depuis 2004 sur le concept de gestion durable des matieres (GDM). Cette etude de cas, qui fait partie d? une serie de quatre etudes, a ete realisee afin d? tablir si le concept de GDM est utile pour examiner la disponibilite des metaux critiques dans l? optique de la gestion de produits hors d? usage, en l? occurrence les telephones mobiles, qui servent de variable representative du secteur en croissance rapide de l? electronique grand public. Etant donne que la GDM n? est pas encore parvenue a maturite, l? approche fondee sur les etudes de cas offre une bonne occasion d? identifier les domaines qui peuvent se preter a l? application de differents outils et instruments d? action pour les responsables de l? action gouvernementale soucieux de l? utilisation des matieres et de l? ptimisation des avantages economiques, environnementaux et sociaux. Cette etude de cas a trait aux metaux presents dans les appareils mobiles. Sont pris en compte, l? antimoine, le beryllium, le palladium et le platine. L? etude de cas est soumise au Groupe de pilotage sur la GDM pour examen et presentation dans le cadre de l? atelier sur la GDM d? octobre 2010. Qu’est-ce que la gestion durable des matieres (GDM) ? Avant de passer a l? etude de cas proprement dite, il n? est pas inutile de presenter la definition de travail de la GDM (qui est reprise et developpee dans l? introduction et dans d? autres documents du SGPDR). En l? ccurrence, la GDM est « une approche destinee a promouvoir une utilisation durable des matieres, qui comprend des mesures visant a reduire les incidences negatives sur l? environnement et a preserver le capital naturel tout au long du cycle de vie des matieres, sans perdre de vue l? efficience economique et l? equite sociale ». En consequence, le developpement durable est l? objectif supreme et la GDM est le moyen de l? atteindre, en mettant l? accent sur l? integration des politiques, la prise en compte du cycle de vie, l? efficience et l? equite dans le cadre de l? elaboration et de l? evaluation des mesures destinees a promouvoir l? tilisation durable des matieres. Le casse-tete que pose la GDM tient au fait que les initiatives des pouvoirs publics visant a maximiser l? utilisation durable des matieres sont liees a differents « points » du cycle de vie : comme l? illustre le graphique suivant, la question se pose de savoir ou commence et ou finit la GDM. Comment les travaux ont-ils ete menes ? Le paragraphe 7 du projet de programme de travail et budget du SGPDR pour 2009-2010 delimite clairement le champ du projet : « Ces etudes exploiteraient les donnees existantes sur les flux de matieres dans certains secteurs ». Autrement dit, meme en cas de mise en evidence d? mportants deficits de donnees, il n? etait pas question de mener des travaux de recherche originaux pour les combler. Si cela etait juge important, de nouveaux travaux pouvaient etre entrepris sous les auspices du SGPDR de l? OCDE. La composition de l? equipe de projet du Gouvernement du Canada est donnee a la section Remerciements, apres la table des matieres. 13 A qui le rapport est-il destine ? Les destinataires principaux des etudes de cas sur la GDM sont les responsables de l? action gouvernementale, les dirigeants d? entreprise et les membres de la societe civile. Dans certains pays de l?

OCDE, le recyclage et les questions connexes sont du ressort de deux, voire trois niveaux d? administration. Pour repondre a la question posee, on pourrait dire que la GDM recherche des solutions de gestion des matieres plus en amont dans le flux de produits, et que c? est la le domaine d? intervention naturel des agents nationaux ou meme internationaux, qui ont peut-etre davantage d? influence en la matiere que les communes. Par consequent, ce rapport est destine aux decideurs qui souhaitent participer au debat sur les merites de la GDM. Quels sont les points cles du rapport dans l’optique de l’action des pouvoirs publics ?

Sur le plan general ? Les avantages et les couts de l? utilisation ou du recyclage/de l? elimination des telephones mobiles ne se repartissent pas de facon egale entre les trois dimensions (environnementale, sociale et economique) du developpement durable, notamment dans les pays en developpement. L? approche fondee sur le cycle de vie en matiere de gestion de la chaine d? approvisionnement est extremement benefique. Meme si l? on parvenait a recuperer tous les appareils mobiles et a maximiser le recyclage des metaux qu? ils contiennent, il serait necessaire de mener des activites d? xtraction pour repondre a la demande croissante de services fournis par ces metaux. Dans le cycle de vie des appareils electroniques grand public, la phase de conception revet une importance capitale, puisque c? est elle qui determine le type et la quantite de matieres utilisees. Les decisions prises a ce stade ont des repercussions economiques et environnementales directes au moment du recyclage des appareils. Comme la plupart des secteurs de l? electronique grand public, celui des telephones mobiles se caracterise par une formidable aptitude a faire evoluer rapidement les technologies.

En particulier, l? introduction de nouveaux materiaux (non metalliques, a base de polymeres) peut avoir un impact sur les activites de reutilisation et de recyclage a l? avenir. A cet egard, l? innovation technologique est un important determinant des politiques. ? ? ? ? Sur le plan economique ? Etant donne que les resultats de la planification de la GDM relevent de trois dimensions differentes (economique, environnementale et sociale), il est tres difficile de definir une methode d? evaluation des couts et avantages totaux qui soit juste et equilibree.

De nombreux produits electroniques grand public conservent une valeur de reutilisation ou materielle, notamment ceux qui contiennent des metaux; a moins d? etre incorpores au flux des dechets et perdus, ces produits peuvent faire et font l? objet d? echanges internationaux; en pensant a l? echelle mondiale et en agissant a l? echelon local, les decideurs nationaux peuvent contribuer a instituer au niveau international une approche globale afin que ces produits et les materiaux qui les composent soient geres en veillant a une utilisation durable des metaux qu? ls renferment, comme indique dans cette etude. Le degre de « criticite » d? un metal est largement influence par sa geographie. En general, les metaux critiques sont extraits dans un nombre d? endroits restreint (ou produits conjointement ? ? 14 avec des metaux de base), mais on les trouve le cas echeant dans d? autres endroits: l? augmentation des prix entraine l? ouverture de mines. ? L? origine du metal (de premiere fusion ou de recuperation) est fonction des parametres economiques et de la disponibilite. La valeur economique d? un metal ne reflete pas necessairement sa criticite et n? st pas forcement correlee a celle-ci (exemple de l? or). La gestion du flux de telephones mobiles qui ne sont plus utilises pourrait permettre d? optimiser la valorisation des metaux qu? ils renferment, mais aussi soulever des problemes commerciaux dans certaines conditions. Les politiques visant a modifier ces flux ou a les controler peuvent engendrer des obstacles non tarifaires aux echanges. Lors de la phase de conception des produits, differents choix de matieres sont envisages. Il y a un lien direct entre d? une part les possibilites et le degre de substitution de matieres, et d? utre part la rarete et les prix. Lorsque la rarete se traduit par une hausse des prix des metaux de premiere fusion, par exemple, le jeu du marche entraine une forte augmentation du recyclage de metaux et des investissements dans les technologies appropriees. ? ? ? Sur le plan environnemental ? ? La qualite des materiaux est determinee par leur conformite aux specifications etablies. La conception avisee des produits, l? efficience economique dans l? utilisation des ressources et une infrastructure de recyclage efficace sont les meilleurs moyens de preserver le « capital naturel ». La collecte de l? nsemble des appareils concernes, la reutilisation de leurs elements ou le recyclage des matieres qui les composent contribuent grandement a maximiser le rendement d? utilisation des ressources. Le recyclage est une activite econome en energie qui a pour effet de reduire les emissions de gaz a effet de serre (meme si les avantages dependent de la matiere consideree). Des installations de recyclage dont le fonctionnement obeit a des normes de gestion ecologiquement rationnelles devraient etre en mesure de traiter des matieres ou qu? elles se trouvent et quelle que soit la source des matieres.

Il est necessaire d? etablir au niveau mondial un inventaire des installations assurant une gestion ecologique et capables de traiter des appareils electroniques grand public hors d? usage, et c? est la une idee qui pourrait etre soumise au secretariat de la Convention de Bale en vue d? un projet futur. Le remplacement des composants toxiques et non recyclables peut etre envisage, mais des repercussions defavorables sur la qualite des produits sont possibles, et ce point doit etre examine attentivement a l? aide d? une methode d? evaluation des risques afin d? viter des effets negatifs. ? ? ? ? Sur le plan social ? Consommateurs, producteurs et pouvoirs publics sont les principaux acteurs concernes par la gestion durable des matieres et des produits, mais les deux premiers ne s? inscrivent pas dans la meme optique et n? ont pas les memes motivations que les pouvoirs publics, pour qui il s? agit d? optimiser les avantages pour les administres et/ou de reduire au minimum les risques auxquels ceux-ci sont exposes. L? analyse sociale du cycle de vie est un outil nouveau qui fait entrer en ligne de compte les consequences sociales de l? tilisation durable des matieres, mais des travaux supplementaires 15 ? s? imposent pour mettre au point cette methodologie afin qu? elle favorise l? elaboration de politiques plus eclairees. Principales questions entourant la GDM et premiers elements de reponse Quels sont aujourd’hui d’apres les estimations les flux de ressources les plus importants (en termes d’incidences environnementales), et comment devraient-ils evoluer ? A l? heure actuelle, il se vend chaque annee dans le monde quelque 1. 2 milliard de telephones mobiles qui representent un poids de 84 000 tonnes (sans compter les batteries).

S? agissant des metaux qui nous interessent, 84 tonnes d? antimoine (Sb), 7. 1 tonnes de beryllium (Be), 12. 1 tonnes de palladium (Pd) et 0. 3 tonne de platine (Pt) sont utilises pour fabriquer ces appareils. Premierement, il n? existe pas actuellement de donnees sur le cycle de vie en ce qui concerne le Sb et le Be. Deuxiemement, les flux de matieres en soi ne peuvent pas etre employes comme un indicateur indirect des incidences environnementales. Troisiemement, on ne peut pas traiter la question des incidences sans appliquer des methodologies de GDM supplementaires. Le nombre d? ppareils mobiles vendus chaque annee continuera d? augmenter. L? evolution de leur poids dependra des innovations realisees et de la demande des consommateurs, et certains fabricants signalent que selon toute probabilite, le Be et le Sb cesseront progressivement d? etre employes en raison des preoccupations au sujet de leur toxicite/effet sur la sante. Par ailleurs, on s? attend a ce que la demande de Pd et Pt pour d? autres produits, tels que les dispositifs antipollution, augmente, entrainant un rencherissement de ces metaux; dans ces conditions, de nouvelles technologies faisant appel a d? utres materiaux seront vraisemblablement developpees. Cela etant, compte tenu de la rapidite des evolutions intervenues ces dernieres annees, les projections concernant les nouveaux appareils et l? application de nouveaux materiaux sont extremement incertaines. En quoi l’approche fondee sur le cycle de vie peut-elle procurer de nouveaux enseignements et permettre de les traduire en mesures ? L? approche fondee sur le cycle de vie donne aux recycleurs et aux gestionnaires de dechets la possibilite d? apprecier et eventuellement d? influencer le type et le volume des matieres qui traversent le systeme.

En ce qui concerne les appareils mobiles, une meilleure connaissance du cycle de vie peut permettre d? appuyer et de developper les activites actuelles de reutilisation et de recyclage. En particulier, la collaboration entre recycleurs et concepteurs de produits constituerait un moyen interessant de combler le fosse qui semble les separer: par la comprehension des interactions et des relations de dependance inherentes aux etapes du cycle de vie que sont la conception, la production, l? utilisation, la reutilisation et le recyclage, il peut etre possible de mettre en evidence de nouvelles mesures d? melioration de l? efficience. Quelles mesures ont ete prises ou peuvent etre prises par les pouvoirs publics pour favoriser des resultats compatibles avec un developpement durable ? Le recyclage permet un traitement des matieres plus econome en energie. L? action des pouvoirs publics devrait mettre l? accent sur le lien entre economies d? energie, amelioration des facteurs economiques et abaissement des emissions de GES. Afin d? ameliorer les rendements de recyclage et de reduire l? exposition des travailleurs, les politiques de gestion des risques consistent notamment a sensibiliser et a definir des normes.

Les fabricants commencent a abandonner peu a peu certaines matieres contenues dans les telephones mobiles dont on a etabli qu? elles posent des problemes aux recycleurs (le Be et le Sb, par exemple). La conception dans l? optique du recyclage est theoriquement souhaitable et peut etre encouragee par l? adoption de mesures instituant entre autres la responsabilite elargie des 16 producteurs (REP) ou la responsabilite individuelle des producteurs (RIP). L? experience montre que la ou l? action des pouvoirs publics a debouche sur des programmes de REP, les taux de recuperation des produits sont generalement en hausse.

Il s? agit sans doute de la meilleure approche pour gerer les produits grand public hors d? usage comme les appareils mobiles. En fait, la plupart des fabricants d? appareils ou fournisseurs de services mobiles proposent sous une forme ou une autre un programme de reprise de ces produits: le defi consiste a faire en sorte que le grand public y participe. Etant donne que la duree de vie de ces appareils va diminuant, des systemes de consigne ou des formules originales de location pourraient constituer un bon moyen d? ccroitre les taux de collecte. L? interdiction de l? elimination des appareils en question au niveau national ou regional envoie un message fort au public, mais elle risque en fin de compte d? etre inapplicable et meme inutile si des infrastructures de recyclage idoines ne sont pas en place. Etant donne que la duree de vie technique d? un telephone mobile est d? environ dix ans, les mesures publiques incitant les utilisateurs a garder plus longtemps leur telephone vont in fine dans le sens de l? tilisation durable des matieres. Des prescriptions relatives a la longevite des produits pourraient etre incorporees dans les cahiers des charges definis pour les marches publics; ou bien, les durees d? utilisation des equipements electriques et electroniques dans l? administration pourraient etre rallongees. L? approche la plus efficace consiste sans doute a associer plusieurs politiques et programmes. Des informations complementaires au sujet des mesures deja en vigueur ont ete presentees dans un autre rapport de l?

OCDE intitule « Inventory of International Initiatives Related to Sustainable Materials Management » (septembre 2008): les initiatives en question portent entre autres sur la responsabilite sociale des entreprises, les politiques integrees en matiere de produits, les centres de production propre, les marches publics ecologiques, l? eco-etiquetage et la REP. Dans quelle mesure differents acteurs de la societe s’engagent-ils dans des initiatives promouvant un comportement responsable afin d’? uvrer activement en faveur de resultats compatibles avec un developpement durable?

De nombreuses activites sont en cours sur differents aspects touchant aux produits electroniques grand public en particulier, et aux metaux en general. A la page 36 du document “Critical Metals Case Study Annexes”, la figure 3 recense 25 initiatives de portee internationale (MPPI, PACE, GeSi, StEP, etc. ) ou nationale (Canada, Australie…). Parmi les termes employes dans les intitules de ces initiatives, on trouve « responsable », « bonne gestion », « engagement », « durabilite », « coalition » ou encore « partenariat ». Plusieurs questions se posent : 25 initiatives, est-ce trop ou trop peu?

Comment ces programmes sont-ils suivis et evalues? Sont-ils performants (resultats obtenus)? Sont-ils d? un bon rapport cout-efficacite? Pourquoi ont-ils ete mis en place a l? origine? Rassemblent-ils les bons partenaires? Qui finance ou soutient ces activites? Voila autant de bonnes questions qui appellent des reponses. Quels sont les principaux deficits de connaissances? ? ? ? On sait tres peu de choses du flux mondial des telephones mobiles qui sont destines a etre reutilises ou recycles. Les donnees sur le cycle de vie concernant certains metaux critiques sont sommaires. Les donnees relatives aux emissions de GES et a la consommation d? nergie qui ont ete reunies pour cette etude de cas ont ete agregees au niveau des phases d? extraction/affinage et de fabrication: des ensembles de donnees distincts pour chaque phase sont necessaires. Peut-on mesurer les couts sociaux caches des processus de production/recyclage des telephones mobiles et des metaux critiques? ? 17 ? Comment comparer les avantages economiques et sociaux des appareils de communications mobiles et les incidences environnementales et sociales d? une elimination ou d? un recyclage contre-indique de ces appareils? Pourquoi les utilisateurs de telephones mobiles conservent-ils les appareils qu? ils n? tilisent plus, et quel est le meilleur moyen de faire participer les consommateurs aux programmes de collecte prevus ou deja en place? Quel est le cout moyen de reconditionnement d? un telephone mobile et quel est le rapport de substitution entre telephones mobiles reutilises et telephones mobiles neufs? Quelle est l? importance du secteur informel du recyclage des produits electroniques grand public? De nouvelles analyses economiques sont necessaires pour ameliorer la comparaison entre les activites de recyclage informelles (de faible technicite) et celles mettant en jeu des operations de fusion (procedes integres de pyrometallurgie).

Les connaissances scientifiques doivent etre approfondies pour mesurer le risque pose par l? elimination finale des telephones mobiles dans des decharges amenagees et des incinerateurs « de pointe » dotes de dispositifs antipollution (par opposition aux decharges et aux incinerateurs rudimentaires dont les dispositifs antipollution sont insuffisants ou inexistants). ? ? ? ? ? A quoi peuvent servir les conclusions du rapport ? Les conclusions du rapport sont resumees dans la section sur les points cles dans l? optique de l? ction des pouvoirs publics et dans la section precedente sur les principaux deficits de connaissances. Ces deux domaines sont au centre de la presente etude de cas. On trouvera plus de details sur l? un et l? autre dans les sections 4 et 5 du rapport principal. Dans ce rapport, quatre methodologies de GDM (analyse des flux de substances, evaluation du cycle de vie, eco-efficience et cadre propose pour l? incorporation des aspects sociaux) sont utilisees pour detailler l? etat des connaissances concernant la source et le devenir des metaux critiques contenus dans les telephones mobiles.

Les telephones mobiles doivent etre consideres comme une variable representative des autres produits electroniques grand public, meme s? il est admis que leur poids relatif dans le flux des dechets solides mis en decharge et incineres dans le monde, bien qu? en augmentation rapide, est aujourd? hui tres faible (moins de 0. 1 % du total en poids au Canada). Meme si les quantites en jeu sont faibles, la presence dans les telephones mobiles de metaux de valeur, a la fois precieux et critiques, retient largement l? interet. Ces metaux posent-ils un risque en cas d? abandon dans l? environnement?

Leur valorisation vaut-elle la peine? Quels sont les facteurs qui favorisent un recyclage accru et ceux qui y font obstacle? Voila quelques-unes des questions que les decideurs devraient se poser afin de mieux cerner les modalites d? application de la GDM. Une autre demarche pourrait consister a assurer une concertation nationale afin de sensibiliser les interesses au concept et de susciter de leur part un retour d? informations sur son utilite. Les responsables de l? action gouvernementale n? envisagent pas tous de la meme facon le caractere critique des metaux utilises dans les appareils electroniques grand public.

Ce rapport montre que la notion de criticite est subjective, liee a la geographie et susceptible de varier dans le temps. A la base de cette notion, il y a l? idee de « motif ». Les determinants de la criticite sont principalement d? ordre commercial ou economique. Les nations productrices ont interet a assurer la perennite des approvisionnements en metaux necessaires pour fabriquer les biens economiques dont depend leur bien-etre economique et social a un prix qui permette de preserver leur competitivite internationale.

Une soudaine interruption des approvisionnements en metaux reputes « critiques » pour certaines applications peut entrainer d? importants bouleversements economiques et sociaux. Ainsi, la criticite peut etre liee a la « disponibilite » et a la 18 demande. Lorsqu? il s? agit d? un enjeu ou d? une application « strategique », c? est-a-dire lie a la defense nationale, le cout est rarement un facteur determinant. Dans ce document, nous ne tentons pas d? exposer le raisonnement qui sous-tend l? identification des metaux critiques, car celui-ci varie selon les pays et dans le temps.

Voici quelques-unes des conclusions importantes de cette etude: premierement, la collecte des telephones mobiles usages doit etre grandement amelioree au Canada et dans d? autres pays de l? OCDE. Deuxiemement, la phase de triage qui suit la collecte optimise la reutilisation des appareils, ce qui est determinant pour la viabilite economique de ces activites. Troisiemement, les fabricants d? appareils prefereront peut-etre encourager le recyclage plutot que la reutilisation, car cela leur permet de vendre davantage de produits neufs.

Quatriemement, les intervenants qui assurent les etapes de traitement intermediaires jouent un role important, le demontage des appareils usages permettant la reutilisation des pieces, le retrait des polluants et la valorisation des materiaux. Cinquiemement, les installations qui sont gerees de facon efficiente et parviennent a maximiser les rendements de recyclage devraient etre assez competitives sur le marche mondial pour s? approvisionner en quantites suffisantes (telephones mobiles hors d? usage compris), meme si les entreprises fonctionnant selon des normes moins contraignantes faussent la concurrence.

Les interventions publiques visant a assurer l? approvisionnement de pays producteurs de telephones mobiles en certains metaux iraient a l? encontre de l? engagement general de l? OCDE en faveur de l? economie de marche et de l? objectif qui prevoit d? aider les autres pays a assurer leur developpement economique. Sixiemement, sachant que le recyclage informel dans les pays en developpement a des effets dommageables sur l? environnement et la sante, il est imperatif de renforcer les capacites de gestion ecologique, car le nombre d? sagers de la telephonie mobile augmente tres rapidement en Asie et en Afrique. Pour soutenir des activites de GDM telles que la collecte et le recyclage des telephones mobiles, les pouvoirs publics peuvent intervenir sur l? ensemble du cycle de vie de ces appareils. La portee et l? ampleur de ces interventions varieront selon les pays de l? OCDE, en fonction des preoccupations politiques et de la « culture » de chacun. Le cas extreme est celui ou les pouvoirs publics parviennent a appuyer ou meme a rendre obligatoire la conception dans l? optique du recyclage au travers d? changes de vues avec l? industrie sur la REP; toutefois, il s? agit la d? un defi de taille pour les pays qui ne comptent pas beaucoup de fabricants. On peut aussi imaginer que les discussions menees avec les entreprises de telecommunications dans le cadre d? instances comme l? Initiative pour un partenariat sur les telephones portables (MPPI) debouchent sur des initiatives volontaires tournees vers la realisation des memes objectifs (par exemple, retrait du beryllium des telephones mobiles dans un souci de securite et de protection de la sante des travailleurs).

Une autre etape du cycle de vie ou une intervention des pouvoirs publics peut etre efficace est celle ou l? utilisateur doit decider de ce qu? il fait d? un telephone qui ne lui sert plus. A ce stade, si l? utilisateur peut recuperer une consigne payee lors de l? acquisition du telephone ou si l? elimination de l? appareil est interdite, par exemple, on peut esperer un accroissement du taux de collecte et donc des activites de recyclage. On trouvera un examen plus approfondi des principes d? action et des instruments de la GDM dans les documents thematiques prepares pour le Sous-groupe de l?

OCDE sur la prevention de la production de dechets et le recyclage (SGPDR). Le choix de quatre metaux critiques presents dans les telephones mobiles a ete fait dans le but de circonscrire l? analyse. En volume, l? industrie electronique dans son ensemble represente 5% de la consommation annuelle mondiale de platine, 16 % de celle de palladium, 50 % de celle d? antimoine et environ 7 % de celle de beryllium

x

Hi!
I'm Belinda!

Would you like to get a custom essay? How about receiving a customized one?

Check it out